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We present direct numerical simulations and Lagrangian averaged �also known as � model� simulations of
forced and free decaying magnetohydrodynamic turbulence in two dimensions. The statistics of sign cancel-
lations of the current at small scales is studied using both the cancellation exponent and the fractal dimension
of the structures. The � model is found to have the same scaling behavior between positive and negative
contributions as the direct numerical simulations. The � model is also able to reproduce the time evolution of
these quantities in free decaying turbulence. At large Reynolds numbers, an independence of the cancellation
exponent with the Reynolds numbers is observed.
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The magnetohydrodynamic �MHD� approximation is of-
ten used to model plasmas or conducting fluids in astrophysi-
cal and geophysical environments. However, given the huge
amount of temporal and spatial scales involved in the dy-
namics of these objects, simulations are always carried out in
a region of parameter space far from the observed values.
Lagrangian averaged magnetohydrodynamics �LAMHD�,
also called the MHD alpha model �1,2� �or the Camassa-
Holm equations in early papers studying the hydrodynamic
case �3��, has been recently introduced as a way to reduce the
number of degrees of freedom of the system, while keeping
accurate evolution for the large scales. This approach �as
well as large eddy simulations �LES� for MHD; see, e.g.,
Ref. �4�� is intended to model astrophysical or geophysical
flows at high Reynolds numbers using available computa-
tional resources. Several aspects of the MHD alpha model
have already been tested in two and three dimensions at
moderate Reynolds numbers, against direct numerical simu-
lations of the MHD equations �2�. These studies were fo-
cused on comparisons of the evolution of global quantities
and the dynamics of the large scale components of the en-
ergy spectrum �2,5�.

All these models introduce changes in the small scales in
order to preserve the evolution of the large scales. In several
cases, it is of interest to know the statistics of the small
scales. It is also important to model properly the small scales
because they have an effect on large scales, as for example in
the case of eddy noise: the beating of two small scales eddies
produces energy at the large scale, and this may affect the
global long-time evolution of the flow, an issue that arises in
global climate evolution or in solar-terrestrial interactions.
Moreover, plasmas and conducting fluids generate thin and
intense current sheets where magnetic reconnection takes
place. In these regions, the magnetic field and the current
rapidly change sign, and after reconnection the magnetic en-
ergy is turned into mechanical and thermal energy. These
events are known to take place in the magnetopause �6�, the
magnetotail �7�, the solar atmosphere �8�, and the interplan-
etary medium �9�.

Current sheets are strongly localized and intermittent. To
preserve reliable statistics of these events in models of MHD

turbulence is of utmost importance to model some of these
astrophysical and geophysical problems. In this work, we
study whether the MHD alpha model is able to reproduce the
statistics and scaling observed in these phenomena.

In order to measure fast oscillations in sign of a field on
arbitrary small scales, the cancellation exponent was intro-
duced �10–12�. The exponent is a measure of sign singular-
ity. We can define the signed measure for the current jz�x� on
a set Q�L� of size L as

�i�l� = �
Qi�l�

dx jz�x���
Q�L�

dx	jz�x�	 , �1�

where �Qi�l���Q�L� is a hierarchy of disjoint subsets of size
l covering Q�L�. The partition function � measures the can-
cellations at a given lengthscale l,

��l� = 

Qi�l�

	�i�l�	 . �2�

Note that for noninteger L / l the subsets will not cover Q�L�
and finite size box effects must be considered in the normal-
ization of Eq. �1�. We can study the scaling behaviors of the
cancellations defining the cancellation exponent �, where

��l� � l−�. �3�

Positive � indicates fast changes in sign on small scales �in
practice, a cutoff is always present at the dissipation scale�. A
totally smooth field has �=0. This exponent can also be re-
lated with the fractal dimension D of the structures �12�,

� = �d − D�/2, �4�

where d is the number of spatial dimensions of the system. In
some circumstances, we will also be interested on the can-
cellation exponent for the vorticity �z. In that case the vor-
ticity replaces the current in the definition of �i�l� �Eq. �1��.

Under special assumptions, relations between the cancel-
lation exponent and scaling exponents have also been de-
rived �11�. Positive cancellation exponent � has been found
in plasma experiments �10�, direct simulations of MHD tur-
bulence �12�, in situ solar wind observations �13�, and solar
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photospheric active regions �14�, where changes in the scal-
ing were identified as preludes to flares.

In this work we will consider both free decaying and
forced simulations of incompressible MHD and LAMHD
turbulence in two dimensions �2D�. The MHD equations in
2D can be written in terms of the stream function � and the
z component of the vector potential Az,

�t�
2� = ��,�2�� − �Az,�

2Az� + ��4� �5�

�tAz = ��,Az� + 	�2Az, �6�

where the velocity and magnetic field are given by v=�

 ��ẑ� and B=�
 �Azẑ� respectively, and �F ,G�=�xF�yG
−�xG�yF is the standard Poisson bracket. The LAMHD
equations are obtained by introducing a smoothing length �,
and the relation between smoothed �denoted by a subindex s�
and unsmoothed fields is given by F= �1−�2�2�Fs, for any
field F. The system of LAMHD equations in this geometry
�2� is

�t�
2� = ��s,�

2�� − �Asz
,�2Az� + ��4� �7�

�tAsz
= ��s,Asz

� + 	�2Az. �8�

For both systems of equations, the current is given by
jz=−�2Az, and the vorticity by �z=−�2�. In these equations
and in all the following figures, all quantities will be given in
familiar Alfvénic dimensionless units. Equations �5�–�8� are
solved in a periodic box using a pseudospectral code as de-
scribed in Ref. �2�. The code implements the 2/3 rule for
dealiasing, and the maximum wave number resolved is
kmax=N /3, where N is the linear resolution used in the simu-
lation. All the fields are written in dimensionless units.

To characterize the oscillating behavior and sign singu-
larities in the flows obtained from the MHD and LAMHD
simulations, we perform a signed measure analysis and com-
pute the cancellation exponent � for the current and for the
vorticity. Following Eq. �3�, its value is obtained by fitting
��l�=c�l /L�−� through the inertial range, where L=2� is the
length of the box, and c is a constant. The length scales in the
inertial range used for this fit are obtained studying the scal-
ing of the third order structure function �15�.

We first present results for a forced MHD simulation with
10242 grid points, with 	=�=1.6
10−4. Both the momen-
tum and the vector potential equations were forced. The ex-
ternal forces had random phases in the Fourier ring between
k=1 and k=2, and a correlation time of �t=5
10−2. The
system was evolved in time until reaching a turbulent steady
state. The amplitude of the magnetic force averaged over
space was held constant to 0.2, and the amplitude of the
mechanical force to 0.45, in order to have the system close to
equipartition. Two more simulations using the LAMHD sys-
tem were carried out, with the same parameters as the MHD
run but with resolutions of 5122 grid points ���0.0117�, and
2562 grid points ���0.0234�, respectively, �the choice
�=2/kmax is conventional �2,3��. The Kolmogorov’s kinetic
and magnetic dissipation wave numbers in the MHD run are
k��k	�332; in all the LAMHD simulations these wave
numbers are larger than the largest resolved wave number

kmax, by virtue of the model. Note that although it is common
to reduce the spatial resolution even more in studies of the
large scale components of the energy spectrum in LES of
hydrodynamic turbulence, this cannot be done in this context
since wide energy spectra and large amounts of spatial sta-
tistics are needed to properly compute the cancellation expo-
nent �see, e.g., Ref. �16� for a study of intermittency in LES�.

Figure 1 shows ��l� for the three simulations, averaged
using 11 snapshots of the current covering a total time span
of 20 turnover times in the turbulent steady state. A power
law can be identified at intermediate scales, scales smaller
than the forcing band but larger than the dissipation scale.
Note that the two LAMHD simulations reproduce the same
scaling as the MHD simulation. As a result, the sign singu-
larity and fractal structure are both well captured in the in-
ertial range although the alpha model is known to give
thicker structures at scales smaller than � due to the intro-
duction of the smoothing length �2,17�. The best fit for the
current jz using a power law in the inertial range gives
�=0.50±0.17 for the 10242 MHD run, �=0.55±0.19 for the
5122 LAMHD simulation, and �=0.55±0.43 for the 2562

LAMHD simulation. Note that a value of �=0.50 in the
MHD simulation gives a value of the fractal dimension D
=1.00±0.34, close to the codimension of 1 corresponding to
current sheets in MHD turbulence. For the vorticity, the can-
cellation exponent is �=0.73±0.16 for the 10242 MHD run,
�=0.74±0.32 for the 5122 LAMHD simulation, and �
=0.80±0.32 for the 2562 LAMHD simulation, giving a frac-
tal dimension of D=0.54 in the MHD simulation. The values
obtained are compatible with the values of �=0.43±0.06 and
D=1.14±0.12 for the current, and �=0.69±0.12 and
D=0.62±0.24 for the vorticity obtained in Ref. �12� for
forced direct numerical simulations of 2D MHD turbulence
using a 10242 spatial grid and 	=�=8
10−4. Given the
good agreement between MHD and LAMHD simulations, in
the following we will only refer to the cancellation exponent
for the current density.

Figure 2�a� shows the corresponding results for free de-
caying MHD turbulence. Three simulations are shown, one
MHD run using 20482 grid points, a 10242 LAMHD run with
��0.0058, and a 5122 LAMHD run with ��0.0117. The

FIG. 1. ��l� averaged in time for jz in forced MHD turbulence.
The pluses correspond to the 10242 MHD simulation, diamonds to
the 5122 LAMHD run, and triangles to the 2562 LAMHD run. The
dashed line indicates a slope of 0.50. The arrows indicate the iner-
tial range. Note that the slopes are of import, not the offsets.
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three simulations were started with the same initial condi-
tions; initial velocity and magnetic fields with random phases
between k=1 and k=3 in Fourier space, and unit rms values.
The kinematic viscosity and magnetic diffusivity used were
�=	=10−4. The three simulations were evolved in time
without external forces.

The evolution of the cancellation exponent as a function
of time in the free decaying simulations is shown in Fig.
2�b�. For these simulations, the cancellation exponent is
computed between the lengthscales L / l�20 and L / l�70 ,
where a power law scaling in ��l� can be clearly identified
from t=2.5 up to t=10. At t=0 the cancellation exponent � is
zero, which corresponds to the smooth initial conditions. A
gap between t=0 and t=2.5 is present where no clear scaling
is observed. As time evolves, � grows up to 0.75 at t�8, as
the system evolves from the initially smooth fields to a tur-
bulent state with strong and localized current sheets. After
this maximum, the exponent � decays slowly in time. The
maximum of � takes place slightly later than the maximum
of magnetic dissipation, as is also shown in Fig. 2�b�. Note
that the alpha model also captures the time evolution of the
cancellation exponent in free decaying turbulence, as well as
the fractal structure of the problem as time evolves.

As previously noted in Ref. �2�, the alpha model
slightly overestimates the magnetic dissipation. Note,
however, that in the three simulations the peak of magnetic
dissipation takes place close to t�6, just before the peak
of the cancellation exponent �. From the maximum energy

dissipation rate, the Kolmogorov’s dissipation wave number
for the kinetic and magnetic energy at t�6 are estimated as
k��k	�470, and this is again larger than the largest wave-
numbers resolved in the two LAMHD simulations.

The observed slow decay of the cancellation exponent
�compared with the square current� is related to the persis-
tence of strong current sheets in the system for long times,
even after the peak of magnetic dissipation. The system, in-
stead of evolving fast to a smooth solution at every point in
space, keeps dissipating energy in a few thin localized struc-
tures. The existence of these current sheets at late times can
be more easily verified in simulations with smaller viscosity
� and diffusivity 	. While in the peak of magnetic dissipa-
tion the system is permeated by a large number of small
current sheets, at late times only a few current sheets are
observed isolated by large regions where the fields are
smooth.

Given the good agreement between direct numerical
simulations �DNS� and LAMHD as seen in the preceding
figure, we can reliably explore with the model Reynolds
numbers unattainable in a reasonable time with DNS. In this
context, we show that the maximum values of � obtained in
the simulations seem to be insensitive to the Reynolds
numbers within a given method �MHD or LAMHD� once a
turbulent state is reached. As an example, in Fig. 3 we give
the time history of the cancellation exponent and the
square current for a free decaying LAMHD simulation with
	=�=2
10−5 up to t=20. The initial conditions are the
same as in the previously discussed simulations, and
��0.0033. It is worth noting that the time evolution of the
magnetic dissipation in both decaying runs �Figs. 2�b� and 3�
confirm previous results at lower Reynolds numbers �18,19�:
namely that the peak dissipation �t�7� is lower for higher
Reynolds numbers, while for later times it is quite indepen-
dent of the Reynolds values.

Figure 4 shows ��l� for early and late times in the same
simulation. At small scales, the slope of � always goes to
zero, as can be expected since close to the dissipation length-
scale the fields are expected to be smooth. However, note
that as time evolves the scaling of � with l drifts to smaller
scales, and at t=20 a scaling can be observed up to
l /L�0.005. By virtue of the model the scaling is wider and
the slope goes to zero faster than in the DNS due to the
larger Reynolds number.

The statistics of sign cancellation in magnetofluid turbu-
lence are related with intermittency and anomalous scaling

FIG. 2. �a� ��l� at t=4 in the free decaying simulations, pluses
correspond to the 20482 MHD simulation, diamonds to the 10242

LAMHD run, and triangles to the 5122 LAMHD run �the dashed
line indicates a slope of 0.52 and the arrows indicate the inertial
range�; �b� time history of the cancellation exponent �thick lines� for
the three runs, and of 	
jz

2�, where the brackets denote spatial
average.

FIG. 3. Time history of � �solid line� and 	
jz
2� �dotted line�, for

a free decaying LAMHD simulation with 	=�=2
10−5.
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of structure functions �11�, inherently associated with the dy-
namics of the small scales, and as a result harder to model in
truncations or closures of the MHD equations. For example,
two-point closures of turbulence behave smoothly �they also
have no information about physical structures since they deal
only with energy spectra�. The intermittency of LES is an

open topic, in particular because for neutral fluids the need to
study the three dimensional case implied until recently that
only low-resolution studies could be accomplished for which
intermittent structures were barely resolved �see Ref. �20�
for a recent study�. From that point of view, the present study
in two dimensions allows for higher Reynolds number
studies. In MHD turbulence, the energy cascade being to
small scales both in two and three space dimensions, it is
hoped that the information gained here will carry on to the
three-dimensional case. The result stemming from this study
is that the LAMHD alpha model, although it alters the small
scales through filtering, it nevertheless preserves some statis-
tical information concerning the small scales. It is able to
reproduce the scaling observed in forced MHD turbulence,
as well as the time evolution of the cancellation exponent in
free decaying simulations and as such, it represents a valu-
able model for studies of MHD flows for example at low
magnetic Prandtl number � /	 as encountered in the liquid
core of the Earth or in the solar convection zone �see, e.g.,
Ref. �5��.
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